Ameba Ownd

アプリで簡単、無料ホームページ作成

最高速!一次関数の式の求め方

2020.03.19 00:25

皆さん、今回は一次関数です。

前半は、やり方が中心ですが、ぜひ最後の連立との違い、まで見ていただけると嬉しいです。



一次関数であるあるといえば、2点が与えられて、それらを通る直線の式を求める、というものだと思います。

皆さん、このために学校では、連立して解く、などと習っていませんか?

では、ここで断言します。

連立するのは時間のロスなだけです。


では、どうやって求めるのでしょうか。

例として、2点(1,3)(4,9)を通る点をかんがえます。


STEP1傾きを求める

傾きを求める式は、分かりますね。

(yの増加量)/(xの増加量)です。

では、この場合はどうなりますか?

(9-3)/(4-1) = 2

よって、直線の傾きは2です。


STEP2y切片を求める

まず、好きな方の点(僕はより原点に近い点をいつも選ぶので、今回は(1,3))を選びます。

y切片はx座標が0なので、(1,3)までにxは1増加。よって、yは2増加します。だから、

3-2=1

これがy切片です。


答え…y=2x+1




簡単と感じましたか?面倒と感じましたか?

面倒と感じた方は、恐らく新たな手法を覚えることな対してでは無いでしょうか。



では、これから

連立がいかに無駄か

を話していきます。



この方法も連立もしていることは同じ

これに気づいたでしょうか。

では、仮に連立して解いてみましょう。

3=a+b…①

9=4a+b…②

まず、bが係数が揃っているので、

②-①をします。

6=3a


はい、待ったーーーー

この作業、毎回一緒じゃない?

そう、切片をbとおくと、このbの前に係数がつくことは基本ありません。だから、毎回こうやって時間を浪費するのです。



では、続き行きましょう。

3a=6

a=6/3=2


ん?これってつまり何をしている?

aの係数3→x座標の差(増加量)

定数の6→y座標の差(増加量)

a=6/3 でもとめていますね。

つまり…、

傾きの定義通りに求めたさっきの方法とやっていることは同じ! 


では、a=2が求まったら…どちらかに代入しましょう。

3=a+bに代入すると

3=2+b

b=3-2=1


もう分かりますね。

こちらもさっきの方法と同じ!






こう長々と話しましたが、一次関数の式を求める時に、わざわざ文字をおいて連立方程式を書いたところで、無駄なのです。

さっきの方法のようなことを、頭の中ですればいいのです。

(勿論、計算等は書いても構いません。) 


学校等で教わるやり方は、誰にでもできるように、機械的にするやり方を多いです。そういうものに対し、常にもっと他の良い方法が無いか、考えてくれると嬉しいです。





数学には、無限の可能性が秘められています。